Probability on Finite Set and Real-Valued Random Variables
نویسندگان
چکیده
منابع مشابه
Probability on Finite Set and Real-Valued Random Variables
One can prove the following four propositions: (1) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a σ-measure on S1, f be a partial function from X to R, E be an element of S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f and M(E) < +∞ and for every element x of X such that x ∈ E holds a ≤ f(x). Then R(a) ·M(E) ≤ ∫ f E dM. (2) Let X be a non empty set, S1 ...
متن کاملProbability Generating Functions for Discrete Real Valued Random Variables
The probability generating function is a powerful technique for studying the law of finite sums of independent discrete random variables taking integer positive values. For real valued discrete random variables, the well known elementary theory of Dirichlet series and the symbolic computation packages available nowadays, such as Mathematica 5 TM, allows us to extend to general discrete random v...
متن کاملProbability Measure on Discrete Spaces and Algebra of Real-Valued Random Variables
In this article we continue formalizing probability and randomness started in [13], where we formalized some theorems concerning the probability and real-valued random variables. In this paper we formalize the variance of a random variable and prove Chebyshev’s inequality. Next we formalize the product probability measure on the Cartesian product of discrete spaces. In the final part of this ar...
متن کاملA Probability Space based on Interval Random Variables
This paper considers an extension of probability space based on interval random variables. In this approach, first, a notion of interval random variable is introduced. Then, based on a family of continuous distribution functions with interval parameters, a concept of probability space of an interval random variable is proposed. Then, the mean and variance of an interval random variable are intr...
متن کاملAn extension of chaotic probability models to real-valued variables
Previous works ([5][6][8])) have presented a frequen-tist interpretation of sets of measures as probabilis-tic models which have denominated chaotic models. Those models, however, dealt only with sets of probability measures on finite algebras, that is, probability measures which can be related to variables with a finite number of possible values. In this paper, an extension of chaotic models i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2009
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-009-0014-x